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ABSTRACT

Recent interest in pollution control and the proximity of Monterey

Bay to the Naval Postgraduate School prompted an investigation of the

circulation in the bay. The first phase of the study consists of

solving the simple cavity flow problem. A vorticity-stream function

relationship is solved using an explicit, time dependent, finite dif-

ference scheme. Solutions for selected Reynolds' numbers and length

to width ratios of the cavity are obtained. Values are chosen to give

an indication of the flow patterns occurring over a wide range of

these parameters.

Equations for a refined model are derived to include the effects of

the bottom topography, frictional forces and the Coriolis force. A

numerical procedure similar to the one applied to the simple cavity

flow problem is used on the refined equations. The topography of

Monterey Bay is used in this study. Results indicate that closed

circulation patterns are more probable in Monterey Bay than in other

embayments due to the presence of the submarine canyon.
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I . INTRODUCTION

A. BACKGROUND

Monterey Bay, located on the West Coast of the United States

approximately one hundred and twenty miles south of San Francisco,

presents a good opportunity to study currents within an embayment

(Figure 1.1). This bay is well suited for circulation studies because

of the following geographic and oceanographic features. The bay is a

large one and, to a close approximation, it has symmetrical boundaries.

It is semi-elliptical in shape with a major axis of twenty miles and

a width of about eight miles (Figure 1.2). Bisecting the bay is a

large submarine canyon. This canyon originates in the bay offshore of

Moss Landing. At the mouth of the bay, eight miles from Moss Landing,

the canyon attains a depth of six-thousand feet. This topographic

feature is as large as the Grand Canyon in vertical relief. The effect

of the Monterey Submarine Canyon on the circulation within the bay is

one of the problems which is investigated in this study. A desirable

oceanographic feature is the presence of currents which flow past the

bay. The Davidson Current flows north along the West Coast of North

America from November to February. Flowing southward during the

spring and summer is the California Current. It is assumed in this

study that oceanic currents, such as these, are the driving force for

the circulation within an embayment. The currents drive the circulation

by advecting momentum into the area in question. The effects of tidal

forces and local winds are neglected. It is not meant to be implied

that these forces are unimportant, but that only a single component of

the total system is being considered in this analysis.

15





Monterey Bay is conveniently located for conducting circulation

studies for several reasons. First, the Naval Postgraduate School is

located on the shores of the bay in the city of Monterey. Both the

Postgraduate School and the United States Navy are interested in circu-

lation studies of this kind. The facilities at this institution are

well adapted to carry out such studies. The Department of Oceanography

at the Naval Postgraduate School is interested in circulation studies

and has access to oceanographic research vessels. Also, located at the

School is a large computer center with a well-trained staff and an

IBM 360/67 Computer along with all the necessary peripheral equipment.

Secondly, there are many communities located on the shores of Monterey

Bay which are becoming increasingly aware of pollution problems. An

important question that needs to be answered before pollution can be

controlled is: what is the effect of currents on the discharged

effluent? To answer this question the circulation regime of the area

involved must be determined. It is hoped that the results of this study

will provide some answers to the above question.

Prior to this study, little had been done to ascertain the circu-

lation patterns within Monterey Bay. This thesis is part of a larger

research effort being conducted by the Naval Postgraduate School aimed

at determining the forces which dominate in controlling current patterns

within an embayment and the types of patterns which are generated. Pre-

sently, there are three phases to the project. Two phases concern

numerical modeling. One numerical model, the subject of this thesis,

assumes oceanic currents drive the circulation within a bay. A second

model simulates the tide and wind induced circulation. The third phase

involves field studies conducted in order to assess the models which

have been developed.

16
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Figure 1.1 Location of Monterey Bay
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Figure 1.2 Monterey Bay
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B. NUMERICAL MODELING

Recently, with new developments in partial differential equation

theory and finite difference methods, the field of fluid mechanics has

progressed tremendously. The advent of large-scale computers has

spurred these developments and made it possible to solve partial dif-

ferential equations numerically which have proven, so far, to be

impossible to solve analytically. Due to the great speed of these

computers it has become possible to solve large systems of simultaneous

equations rapidly enough to put numerical prediction models in fields

such as Meteorology and Oceanography on a real time basis.

Most circulation problems, basically, involve the solution of a

large number of simultaneous equations with specified boundary con-

ditions. Practically all studies of this type are concerned with

either small-scale flows with simple geometries such as: channel flow,

flow around a cylinder, and simple cavity flow or with large-scale oceanic

circulation studies. Little has been done to try to apply these equations

and numerical techniques to medium-scale flow such as the circulation

within an embayment. There are several possible reasons why more medium-

scale flow problems have not been investigated. One reason is the high

cost of studies of this type. Computer time is very expensive and not

always readily available. Medium-scale problems are in general highly

variable and each case must be dealt with individually. Another reason

is that, before the increased awareness of pollution problems, there was

little interest in the regional circulation beyond that caused by waves

and tides. Lastly, the application of the equations of motion to large

or medium-scale flow problems requires assumptions about the forces and

terms involved which have not yet been universally accepted as being valid,
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There are many numerical procedures that can be used to try to solve

a system of simultaneous partial differential equations. An interesting

result of applying different numerical techniques to the same problem is

the possibility of obtaining different solutions. One of the problems of

numerical modeling is determining whether the correct solution has been

reached, if only one exists. There has been a lot of research into the

problem of the solution of partial differential equations by Ames [Ref. 2],

Considering the Navier-Stokes Equations, he proposes that a unique

solution exists only below a certain Reynolds' number and that above this

Reynolds' number several solutions exist; whereas, above a larger' critical

number no solutions exist. The critical Reynolds' number marks the

transition to turbulent flow. To illustrate the existence of multiple

solutions to a partial differential equation, he gives an example of a

quasi-linear, elliptical partial differential equation for which there

is no unique solution.

An extensive study of various numerical procedures used in the

solution of compressible and incompressible laminar separated flow for

simple geometries was made by Roach [Ref. 7]. His dissertation is quite

thorough in its consideration of the problems encountered and the

techniques used to resolve them. Some of Roach's techniques are

extended in this study to the problem of motion within an embayment in

the simple cavity flow section of this thesis.

C. SCOPE OF PRESENT PAPER

This thesis attempts to take the equations of motion and apply them

to the problem of the circulation in an embayment and solve them

numerically. A progression is made from the simple cavity flow problem

to the refined model. The simple cavity flow problem considers: local

20





rate of change of vorticity with time, advective terms, and lateral

shear stresses. In addition, the refined model considers: planetary

vorticity tendency, topographic vorticity tendency and bottom friction.

Procedures for numerically solving these equations are examined while

economy of computer time and the validity of the solution are kept in

mind. An attempt is made to generalize the computer program so that it

can be used on any embayment. The generality is obtained by allowing the

input of an arbitrary bottom topography.

The model is tested on Monterey Bay in order to discover, not only

the circulation patterns resulting from the interaction of the forces

involved, but also the relative importance of the forces. To determine

the importance of the forces involved, various computer runs are made

with different combinations of the forces acting, and the effect on the

circulation patterns is examined. It is hoped that the results of these

investigations will shed some light on the processes which control circu-

lation patterns and help provide answers to some of the problems which

now exist.
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II. NUMERICAL METHODS

A. INTRODUCTION

This section consists of a brief discussion of some of the aspects

of numerical modeling which are used in this thesis. There are many

excellent texts which contain thorough discussions of this material;

therefore, the material is not covered in depth. All of the repre-

sentations derived in the following section, II-B, will be used in the

development of the numerical equations solved in later sections. The

following paragraphs introduce these concepts and develop the necessary

relationships

.

B. NUMERICAL RELATIONSHIPS

To represent a partial differential equation in numerical form the

starting point is usually Taylor's Theorem. From this theorem, the

necessary expressions which represent derivatives in their various forms

can be derived. Numerical relationships for terms such as the Laplacian

and the Jacobian can then be developed from these expressions. Basically,

these expressions determine the value of a derivative at a given point

in terms of the values at surrounding points and the grid spacing.

1. Taylor's Theorem

The finite difference representation for the derivatives of a

function at a given point in terms of the values of the function at

surrounding points can be derived from Taylor's Theorem.

Taylor's Theorem in Two Dimensional Space:

If u and its derivatives of order _< p+1 are single valued,

finite and continuous at every point on the line segment
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from (x,y) to (x+Ax,y+Ay) then there is a point

(a,b) on that line segment such that

P 3
N+M

u(x+Ax,y+Ay) = u(x,y) + E ^77

'

"f^^l (Ax)
N

(Ay)
M

+ R (2.1)
(N+M)=l ' * 3x3 y

where the remainder, R, is given by

9
N+M

t.
! v u(a,b) - .N ,. .M

R =
rar N+M +,~J^ ( } ( y)

N+M=p+1 3x dy

It can be seen that if Ax and Ay < 1 as N and M * « then R -*
;

and in the limit, the expansion equals the function. If y is held

constant (i.e., Ay = 0) there is a contribution to the summation terms

only when M = 0, therefore

P N
u(x+Ax,y) = u(x,y) + £ |t ^~ (Ax)

N
+ (x

P+1
) (2.2)

N=l * 3x

If x is held constant, (Ax = 0), similarly

P M
u(x,y+Ay) = u(x,y) + I jfr^ (Ay)

M
+ (y

P+1
) (2.3)

M=l 3y

Using these equations, expressions for derivatives at a point

are developed in Section II-B-2.

2. Representation of Derivatives

The following grid illustrates, diagrammatical ly , the

notation that is used to fix the grid position of a given point.
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x-Ax,y+Ay x,y+Ay x+Ax
, y+Ay

Ax

U
i-l,j+l

x-Ax,y

Ay

l.j+l

x,y

i+l,j+l

x,y+Ay

u.
1-l.J

x-Ax,y~Ay

u

x,y-Ay

um,j

x+Ax,y-Ay

i-l.j-l
U
i,j"l 1+l.J-l

Using Taylor's Theorem with y held constant Equation 2.2 in

the new notation becomes

3u,
_LLL

a
2
u. .

u;x1 ,
u. . + —^- Ax + ,

l+l, j i,j 3x 2
3x

2

1 1,1 - .2 . . ,. .3
(Ax) + (Ax)

If - Ax is substituted for Ax the equation becomes

9u. 3
2
u

u. - .
= u. .

- —±-^ Ax + ± i^l (Ax)
Z
+ (Ax)

J

l-l, j i,j 3x 2
3x

2

Linear combinations of 2.4 and 2.5 with the higher order terms

neglected yields

Representation Mag, of Error Diff. Scheme

a u .- .
- u. .

3x Ax

u. .
- u .

ax Ax

(Ax)

(Ax)

Forward

Backward

(2.4)

(2.5)

» u, n .
- u . n3u = i+l, ,1 i-l,,1

9x 2Ax
.2 u... . + u.

1 .

3 u _ i+l,,1 i-l,,

1

- 2u,

3x (Ax)

(Ax)

i*i (Ax)
:

Central
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Similarly, derivatives with respect to Y can be found.

Representation Mag, of Error Diff. Scheme

a u
- -.1.1 " u

- •

3y Ay

r. U. . " U.

Ay

(Ay) Forward

(Ay) Backward

3y 2Ay
(Ay) Central

.2 u. , + u. . _ - 2u. .

A-" = -Uii ^J" 1 i-J. n M,^ 2

2 2
3y (Ay)

Z
(Ay)'

A representation for the Laplacian, V u, can be developed

from the above expressions.

2 2
„2 3 u . 3 u
V u = —7? +

2 2
3x 3y

o u.,
n ,

+ u. . . - 2u. . u. . ,. + u. . - - 2u.

y
2
u = 1+1 >J 1~ 1

>.1 JiX + 1 ?Jtl 1
> .l- 1 LA (2,6)

(Ax)
2

(Ay)
2

3. Representation of the Arakawa Jacobian

This study utilizes Arakawa' s technique for representing the

Jacobian which is an average of three different expressions for the

Jacobian [Ref. 3]. The method Arakawa developed is used for two

reasons. First, it has the desirable property of conserving certain

quantities two of which are the vorticity and the vorticity squared.

A further discussion of the conservative property is contained in

Section II-D. Secondly, the representation is a very stable one which

helps to minimize convergence problems in solving the numerical equations,

The price that is paid for this stability is the high degree of smoothing
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inherent in this representation which may eliminate some small-scale

features. Although these features may be real, it is not felt that

their elimination is very important because this study is only inter-

ested in the general flow patterns. Examination of small-scale features

in the flow patterns with the simplifying assumptions which are made in

this study would not be realistic.

In order to develop the desired relationship for the Arakawa

Jacobian, the following three expressions for the Jacobian are

considered.

... _. 9A 3B dk 3B
T
A . .

J(A,B) = — — — = J (2.7)
3x 3y dy dx

J <A - B > h <A
!f>

- k (A £}
=
jB

(2 - 8)

J <A > B > - i <B $ - h <B §>

- jC
< J - 9)

The Arakawa Jacobian is given by

j = § (/ + j
b
+ j

c
)

Using the same notation as in the previous section, the expressions

become

j
A

= —

L

[(A.,- .-A. . .)(B. ..--B. .) - (A. ...-A. . tXB,,- .-B. . .)
4AxAy i+1,3 i-l, j i,j+l i,j~l i,3+l i,j~l i+l»J i-l»3

J
B

= rr-h [A_ . (B... .,,-B' . -) - A. , . (B. . .,,-B. - . .)
4AxAy i+l,3 i+l,j+l i+l,j-l i-l,J i-l.j+l i-l>3"l

1,3+1 1+1,3+1 i-l,3+l 1,3-1 1+1,3-1 1-1,3-1

J
C

; \ [B. ..-(A..- ,.,-A..- . -) - B. . - (A. n
,..,-A. , , J4AxAy L i,3+l 1+1,3+1 1+1,3-1 i,j-l 1-1,3+1 i-l,j-l

- B... .(A.,- ,.,-A,., . .) + B. , .(A. . ,.,-A. . . ,)]
1+1,3 1+1,3+1 1+1,3-1 i-l,3 i-l,3+l 1-1,3-1
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(2.10)

Collecting terms and factoring yields the desired form.

J(A,B) =
l [B... . (A. . ,+A.^ . -A. ..--A..- ..-) +

12AxAy i+l,3 i,j-l 1+l.j-l i,j+l 1+1,j+1'

B
4 «X1 (A --l-1 -

+A
--i.1 -U-l-A- 1 -

_A
- 1 iA.0 +

i,j+l i+l, J i+l, 3+1 i-l,J 1-1,3+1

B. . . (A. .,,+A. ,,,-A. . -A. . ) +
i-l, J 1,3+1 1-1,3+1 1,3-1 1-1,3-1

B. . . (A. ,+A. . --A..- ,-A... . .) +
1,3-1 i-l,3 1-1,3-1 i+l, J 1+1,3-1

1+1,3+1 i+l,3 1,3+1

B. . .,- (A. ,,,-A. . .) +
1-1,3+1 1,3+1 1-1,3

B. . (A. .-A. . J +
1-1,3-1 i-l,3 1,3-1

B... . - (A. . ,-A.., .)]
i+l, 3-1 1,3-1 1+1,3

C. RELAXATION METHODS

One general approach to solving a set of simultaneous equations is

the relaxation method. This method attacks the problem by determining

the difference between an estimated solution to the equations and the

actual solution. Each successive solution to the equations differs

from the "true" solution by a determined amount. The aim of this method

is to manipulate the equations so that the differences from the "true"

solution approach zero. The manner in which this is achieved is

explained thoroughly in Ref. 1 and discussed briefly in the following

three sections, (II-C-1, II-C-2, II-C-3) . This discussion begins with

the definition of a residual.

1. Residual

One can write a set of simultaneous equations such that all the

terms are on one side of the equality sign, for example:

27





X + Y - 3 =

Residuals are defined as quantities which represent the values of the

equations when values are assigned to the variables, X and Y. The

solution to the equations is reached when the residuals equal zero.

X + Y - 3 = R (2.11)
x

2X + 3Y + 2 = R (2.12)
y

The residuals, R and R , are a measure of the closeness of X and Y to
x y

the exact solution. The problem of solving simultaneous equations

then becomes one of finding values for X and Y which make the residuals

approach zero. One method for doing this is called relaxation.

2. Relaxation

The relaxation method involves taking the largest residual and

computing a value for its associated variable which makes the residual

zero. Using the above two equations as an example, the variable X is

arbitrarily associated with the residual in Equation 2.11. Likewise, the

variable Y is associated with the residual in Equation 2.12.

Assuming that R is the larger residual, then to make R =

only the value of X would be adjusted. Now that R = 0, R is thej x y

largest residual, and the value of Y in Equation 2.12 would be adjusted

to make R =0. This process is continued until the values of R and R
y x y

are within acceptable limits.

It is not economical in terms of computer time to determine

which equation has the largest residual and relax only it. Making many

sweeps through all of the equations and relaxing them simultaneously is

a more efficient method. The reason for this is that logical statements
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take much more computer time to execute than arithmetic statements.

The process which relaxes all of the equations simultaneously until

all of the residuals are smaller than a predetermined value is called

simultaneous relaxation. Modifying this procedure, it is found that

even more computer time is saved if simultaneous overrelaxation is

used.

3. Overrelaxation

Overrelaxation is a process whereby the residuals are not

reduced to zero but are overcompensated for in order to speed the rate

of convergence. This is the usual process used because it minimizes

the computer time needed to solve the equations. This method is

approached by writing the numerical equations in such a way that the

residuals are multiplied by a convergence factor which is called the

optimum overrelaxation factor, Ropt. A critical part of the problem

is determining the factor which will yield the fastest convergence rate.

A . Optimum Overrelaxation Factor, Ropt

a. Introduction

A factor, Ropt, can be determined which maximizes the

convergence rate of a set of simultaneous equations. The convergence

factor must be between 1.0 and 2.0 and its choice may be critical,

because small differences in the factor may make large differences in

the convergence rate. There are two ways of determining Ropt. One

way is through theoretical considerations and the other is to determine

it empirically. These methods are discussed in the following two

sections.

b. Theoretical Ropt

Application of theoretical considerations must be restricted

to simple partial differential equations and simple boundaries because
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of the complexity of the problem [Ref. 7]. Frankel applied the concept

of overrelaxation to Leibmann's method for solving the following

equation

Z = V
2
^ (2.13)

Leibmann's method for solving the above equation involves deriving its

numerical representation and solving for H*. This method produces

yk+1 m
k _R££t

[VF
k

+
M

+ B
2 k

+
^k+1

i»j i,J 2(1+B )
1+1 »1 1- 1 »J '

i»J+l i,J-l

9 k ? k
- (Ax) Z ,

- 2 (1 + B ) V .]

(2.14)

The bracketed term represents the residual, and the solution is being

reached as it approaches zero.

Frankel determined that for a rectangular grid with

Dirichlet boundary conditions the optimum overrelaxation factor is

given by

where

and

1 _ A-a
Ropt = 2 [-

v-±-±] (2.15)

cos (£) + B cos
(J)

a =
[ 3

—]
1 + B

Ax
B -

Ay

N = Number of rows (Ax)

M = Number of columns (Ay)

It is found that for a 41 x 80 grid:
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B = 1 Ropt - 1.8574

B = 2 Ropt = 1.8916

B = 3 Ropt = 1.9064

c. Empirically Determined Value

It can be seen from the last section that Ropt, theoretically,

depends upon the grid size ratio as represented by B and the dimensions

of the array being relaxed. A study was conducted to experimentally

determine Ropt for the following grid which is the one used in the

simple cavity flow problem.

41 GRID POINTS

80

10

21

21

10

Figure 2.1 Numerical grid

Leibmann's equation for solving for the stream function is the one

relaxed. This is Equation 2.14 with Ropt = 1.

Evaluating the equation involves initializing the grid and

relaxing the equations until every value on the grid differs from the
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previous value by less than 1.0 x 10 . This is approximately the

limit of accuracy on the IBM 360/67 Computer without resorting to

double-precision accuracy which would significantly increase compu-

tational time. To further optimize use of computer time the convergence

is checked only once every ten passes through the grid. Each pass con-

sists of a sweep through the grid from left to right, top to bottom

followed by a sweep from right to left, bottom to top. A limit of

two-hundred passes through the grid is placed on each test.

Results of this study are summarized in Table I and pre-

sented in graphical form in Figures 2.2, 2.3, and 2.4. Table I gives

the number of passes through the grid required for every value on the

grid to converge. The criterion for convergence is that the difference

between two successive passes is less than 1.0 x 10 . Results are

given for four different Reynolds' numbers and for aspect ratios of

1, 2, and 3 represented by Ax = .05, .10, and .15 respectively. In all

cases Ay is held constant at .05. Figures 2.2, 2.3, and 2.4 represent

the same data in graphical form. This illustrates the effect of Ropt

on the convergence of the stream function equation in a more explicit

manner

.

One conclusion which can immediately be drawn from these

empirical results is that Ropt is also a function of the Reynolds'

number. The most significant result of this study is that overestimating

the value to be used for Ropt may significantly increase the convergence

rate; whereas, underestimating Ropt is not nearly as critical. A brief

comparison between the theoretical and empirical results is as follows:
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jJ Theoretical Ropt Empirical Ropt

Re=100 Re=50 Re=10 Re=l

1 1.8574 1.650 1.725 1.625

2 1.8916 1.875 1.875 1.875 1.700

3 1.9064 1.850 1.850 1.825 1.800

From the above summary, it can be seen that the theoretical value for

Ropt is usually greater than the empirical value. This situation might

lead to a poor choice for Ropt; therefore, trying to apply the theoreti-

cal results from simple problems to more complex one might lead to a

bad choice for Ropt.

D. CONSERVATIVE AND TRANSPORTATIVE PROPERTIES

One property which is desirable in a finite difference method is

the conservative property. A finite difference scheme possesses the

conservative property if it preserves a certain integral relation of

the momentum equations [Ref. 7]. This integral relation states that

over some region the time rate of change of a given quantity must equal

the net flux of the quantity across the boundary plus the production rate

of the quantity within the region. Whether a finite difference scheme

preserves the conservative property depends upon the form of the momentum

equations used and the numerical scheme employed. The possession of

this property does not imply that the scheme is more accurate than one

that does not possesses it unless one of the criteria of the problem

is the conservation of a given property. Upwind differencing, used in

the simple cavity flow problem, conserves vorticity. The Arakawa

Jacobian conserves vorticity, vorticity squared, linear momentum and

kinetic energy; however, all procedures that employ the Arakawa Jacobian

do not necessarily conserve these properties.
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Figure 2.2 Plot of overrelaxation factor vs. number of passes required

for convergence for Re = 1, 10, 50, and 100 and aspect ratio
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Another desirable property is the transportative property. The

finite difference form of a flow equation possesses the transportative

property if the effect of a perturbation on a transport property is

advected only in the direction of the flow [Ref. 7], An intuitive

approach to the problem leads one to agree that a perturbation in the

flow field should only move in the direction of the flow. The method

of upwind differencing possesses the transportative property.

E. CONVERGENCE AND STABILITY

The mathematical basis for stability and convergence lies in .the

theory of linear partial differential equations. Linear theory is

used as a guideline for analyzing non-linear equations such as those

used in this study.

A convergent finite difference scheme is one in which all values of

the finite difference solution approach the values of the exact solution

as the finite difference size approaches zero. All the terms in a finite

difference representation can approach the corresponding terms in the

analytic equation, and yet, it is possible that the entire equation will

not approach the exact solution; therefore, the convergence criterion

will be unfulfilled. Convergence, therefore, is concerned with the

limit of the entire equation and not the individual terms.

Stability is achieved when the cumulative effect of all round-off

errors is negligible. This implies that the errors do not increase

exponentially. In the time dependent approach used in both the simple

cavity flow problem and the refined model, the stability of the numerical

method employed to solve the vorticity equation depends upon the size of

the time increment and the degree of convergence of the stream function

38





equation. A critical time step can be determined for each problem.

Exceeding this time step causes the equations to become unstable and

diverge. It is found that the critical time increment depends upon the

grid spacing, Ax and Ay, the Reynolds' number and the depth (in the

refined model) . The most stable solutions for the simple cavity flow

case occur at Reynolds' numbers of approximately one hundred and stability

decreases as the grid size ratio of Ax to Ay increases. For the refined

model, the greatest stability is found around Reynolds' numbers of one-

tenth. Two is the only aspect ratio that is used in the refined model.
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Ill . GOVERNING EQUATIONS

A. BASIC EQUATIONS OF MOTION

The governing equations in this study are derived from the hori-

zontal momentum equations and the continuity equation. Developments

of the momentum and continuity equations can be found in many books on

Physical Oceanography such as: The Principles of Physical Oceanography

[Ref. 5]. Applying Newton's second law to a continuous volume of fluid,

the horizontal momentum equations can be derived. The equation of con-

tinuity can be derived from the principle of the conservation of mass.

Starting with these equations, the complete development of the governing

equations used in this thesis is derived below.

1 . Horizontal Momentum Equations

The Eulerian representation of the momentum equations desired

in this study is derived from Newton's second law utilizing the following

simplifying assumptions:

a. The curvature of the earth is negligible for the distances

considered in this study; therefore, cartesian coordinates can be used

for the coordinate system.

b. Fluid is homogeneous.

c. Fluid is incompressible.

d. Hydrostatic approximation.

e. Vertical component of Coriolis force is negligible.

f. Turbulent stresses are proportional to the gradient of

the mean flow.

These assumptions imply that the only external forces acting are: the

Coriolis force, gravity, wind stress, and bottom stress. Assuming that
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primes denote non-integrated variables, the Horizontal Momentum

Equations are

9u ' m t
3"'

. .
3u f

f , 1 3P'
A „2 , , 9

2
u' ,. 1Nvr— + u' t— + v' fv' = — + A 7 u' + A —

-

(3.1)
3t 3x 3y p 3x H v,, 2

o Z

3v* , 3v' , 3v' . , 1 3P 1

. _2
, , 3"v'T— + u 1 -— + v' -— + fu' = |— + A V v' + A —

—

(3.2)
3t 3x 3y p 3y H v „^2

3z
:

where in Equation 3.1

3u'

, 3u' , 3u'
u' -— + v' -

—

3y
u -

3x

fv'

1 3P'

p 3x

vv

A
9 U

v ^ 2

= Local rate of change of velocity with time

= Non-linear field accelerations

= Coriolis term

= Pressure gradient term

= Lateral shear stress

= Vertical shear stress
3z

2 . Continuity Equation

The Equation of Continuity is needed as one equation in a

system of three equations in three unknowns. Physically, this equation

imposes the condition that no two fluid particles can occupy the same

space at the same time. Continuing the convention that primes denote

non- integrated variables and neglecting any changes in the vertical, the

Equation of Continuity can be expressed mathematically as

|e. + leu: + saL . 0.3)
3t 3x 9y

For incompressible, homogeneous flow, the density, p, is constant;

therefore, Equation 3.3 becomes:
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|^ + |^=0 (3.A)
dx 9y

3. Integrated Equation of Motion

Equations 3.1, 3.2, and 3.4 represent three equations in three

unknowns: u, v, and p. The solution to these equations is fully deter-

mined when proper boundary and initial conditions are specified. Two

approaches may be used in order to solve these equations for the desired

1
xntegrated form.

a. The equations can be integrated over the entire water

column, but this cannot be done without the non-linear terms being

known explicitly as a function of depth.

b. The real problem can be replaced by one which assumes a

homogeneous fluid and the last term in Equations 3.1 and 3.2 can be

replaced by a body force in which u and v are independent of depth.

The second method is employed; therefore, the last term in both

equations is replaced by a body force which results from the wind stress

and bottom stress, defined as

wx bx .2 »

m zr~
= A —

o

(3.5)
ph ph v

8z
2

wy by „2 ?

— — - A (3.6)
ph ph v

3z
2

Substituting these terms into the horizontal momentum equations and

dropping the primes to denote that the variables are now integrated over

the entire water column, the integrated equations of motion are

9u , 9u 9u _ 1 9P , . _2 t
WX

t ,- 7 v—- + u -r— + v fv= T~ + A_
T
V u + — r— (3.7)

3t 9x 9y p 9x H pn ph

The following discussion is taken from Ref. 4, pp 12.
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3v , 3v , 3v . 19P
A

2 t"7 T
by

-T-+U — + V — + fu = — + A 7 v + — — (3.8)
3t 3x 3y p 3y H ph ph

Integrating the equation of continuity over depth, and applying

Leibnitz Rule of integration yields the desired integrated continuity

equation. If the sea surface is assumed to be of constant height,

arbitrarily selected as 0, and if h equals the depth of the ocean, the

equations take the following form

o o

J£ 4" + /#*»-°
-h -h

Using Leibnitz Rule where u and v are independent of depth

o o

|- f udz + |-
/

udZ +
ly" /

UC

-h -h

The desired equation is

3 (uh)
+ jLMO .

3x 3y

B. DEVELOPMENT OF VORTICITY EQUATION

1. Derivation

Starting with the equations of motion (3.7 and 3.8) and the

integrated continuity equation (3.9), the desired vorticity equation

with the wind stress assumed negligible is derived below. The local

wind stress is assumed negligible as this force is not being considered

because the oceanic current is the only forcing function being examined

in this study. Assuming the wind stress is negligible implies

wx wy
t = t =

Cross differentiating the equations of motion,

3(3.8) _ 3(3.7)
3x 3y
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yields

:

3 ,3v 3u. , 3u ,3v 3u. 3 ,3v 3u, 3v ,3V 3u.

3t 3x 3y 3x 3x 3y 3x 3x 3y 3y 3x 3y

,
3 ,3v 3us , r 3u 3f 3v , 3f /0 ,_.+ V — (t —) + f — + u ^— + f -r- + V T— - (3.10)
dy dx 3y 3x 3x 3y 3y

a v- t^y.
^ u

\ r
3 rJL—A _<L el ^ iV C 3x 3y

; l
3x

Q
ph ' 3y

C
ph )]

The vortlcity, £, is defined as

C = — - — (3.11)^ 3x 3y ^' ^

Substituting into Equation 3.10 and collecting terms gives

(3.12)

Expanding the continuity equation produces

3uh 3vh / 3u ,3V,,, 3h , 3h
-z + -x = ("T- + -r-) h + UT— H- v — =
3x 3y 3x 3y 3x 3y

which in turn yields:

3u 3v 1 , 3h 3tu , . _.
-5— + t— =-r-(uT— +v —

)

(3.13)
3x 3y h 3x 3y

Substituting into Equation 3.12 it is found

If
+ » h » + f > + v I7 < ? + f) - £ < u i + v

t> (? + f)

V ? + F <fc* " fe^ (3 - 14)

now.
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a ,t+f\ 3 ,S+f N 1 3 / .n , 1 3 / , ^u
ai (ir} + v

17 (—

>

=
h

u
ai <c H ' f) +

ir
v
17 (c + f)

-^• (u ^ + v "87) a + f) (3 - 15)

therefore:

9? L u r
9 ^+^ S ,C+fN1 . „2 . 3 ,x

bX
N 3 ,x

by

Tf- + h [u — (tt—) + v — (*—-)] = A.V ? + — (-r-)- T~ ("IT")3t 3x h 3y h II 3y ph 3x ph

(3.16)

Introducing the stream function, ^ , and defining its partial derivatives

as

:

3y

3* h
(3 - 17)

^ = Vh

they can be substituted into the vorticity equation to give

f " FfO + f f^ - V*' + I" (V - f c£> (3-18)
3t 3y 3x h 3x 3y h H 3y ph 3x ph

If the Jacobian, J, is denoted as

„,. „ N 3A 3B 3A 3B ,„ ,„.
J(A,B) = r- — - — — (3.19)

3x 3y 3y 3x

Equation 3.18 can be written

H + j <. <**» - V 2
^ +

17 (f> - k (f> < 3 - 20)

2. Nondimensionalization

The equations are nondimensionalized to generalize the results,

freeing them from the constraints of dimensionality. Nondimensional

equations can be written in many different forms depending on the way

in which the nondimensional parameters are formed. For example, non-

dimensional time can be defined as:
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I- l

L/U

or

T =

l
2
/Ah

where

L = Characteristic length

U = Characteristic velocity

A^ = Horizontal eddy diffusivity

The choice of methods depends upon the desired result which in turn

depends upon the way in which the equation is going to be solved.

Physical interpretations of the parameters developed may also dictate

the method to be used. This is because certain parameters may be

desired which can be used to help interpret the results.

In nondimensionalizing, reference quantities must be defined.

The following reference quantities are the ones used in this study:

L = Characteristic length

U = Characteristic velocity
oo J

D = Characteristic depth

also used in the development are:

= Beta-plane approximation to the Coriolis force

A^ = Horizontal eddy diffusivity

Using these quantities the following relationships between nondimensional

and dimensional quantities are derived

Length scale

x -r '-?

Depth scale

H - ±H " D
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Velocity scale

U -2- V =2-
u u

00 o

Time scale

T- '

L/U

Nondimensional Coriolis parameter

The remaining quantities to be nondimensionalized can be done so in terms

of the above nondimensional quantities. They are

Nondimensional partials of the stream function

Knowing that

|t = - uh = - UU HD
3y °°

then

II - r
X

\ M
9Y

=
l
U D

;
3y

Nondimensional vorticity

From the definition of the vorticity

_ _3v _ _3u _ . _a_V 3U, j»
C " 8x 9y

=

l 3X 3Y J
L

thus

z - $-> c

Nondimensional bottom stress

From Appendix A the following relationship is obtained

pL h 9y HD ^
U
°°
U;

3Y
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therefore

b - b— = (
J—)

—
pH V 3LU ' ph

Nondimensional Del operator

The operator is defined as

2 2

2 2
3x 3y

thus

2 2 2
V
Z

= (L ) V
Z

Notation is changed at this point for clarity of presentation. Sub-

scripts are now used to denote differentiation. This notation transforms

Equation 3.20 into

r+f r+f ? T
bx

x
bx

cT -* <V> + *x <*& v ? +
<^r>

-
(^

x y y x

All of the nondimensional terms are now substituted into the dimensional

1
equation.

U

z
t (r)2 " U~D^

(U /L)Z+3LF

DH
- + U DH'x

x L °°

(U /L)Z+BLF

DH

1

y l

«> 2

*h 3 v z + T
6LU bx by

factoring yields

U 2 U 2
00 CO

Z+%-F

H
x

U 2
Z + ^F

H

bx byA
H
U

°° 2-V v z + eu i (V-) - <V-> i

T 3 °° pH y pH x

Y =
x

dividing by:

U 2
CO

For notational purposes, small x's and y's will be used to denote non-

dimensional space coordinates.
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and defining the two nondiraensional parameters

LU
00

Re = —— = Reynolds number

e = = Reciprocal of Rossby number
CO

the equation becomes

74-cF 7+pF 1 ? x
bx

r
by

z
t - *

y «*¥>, + \ 'f1
, h v z + E [$r>, - §r>x] (3 - 21)

Employing the definition of the Jacobian,

7+rF 1 ? r
bx

r
by

Z
T
+ J (I, (*£££» - ^ V

2
Z + e [(^r)

y
- (^-)

x
] (3.22)

This form is compact and neat for notational purposes but it is not

suitable for solving numerically because, it is hard to separately

control the individual forces. Expanding the Jacobian transforms the

equation into one which is more suitable. Expansion of the Jacobian

yields

j / ¥ (
Z+e¥

)) = w f
Z+eF

) - w (
Z+cY

)J ^' l H jj
x

K H ;

y y
K H ;

X

H(Z+eF) -(Z+eF)H H(Z+eF) -(Z+eF)H
= y r 1 Y_i _ y r

* X-i

x
l

h
2

]

y
[

h
2

]

Y (Z+eF) Y (Z+eF) , 7J_ _.

H H 7
L

y x x y
J

rl

(f 2 -f Z )

=
X y

„
y X

+ £ (Y F -¥ F ) +
(Z+

^
F)

[H ! -H ? ]
H Hxyyx u 2 xyyx

rl

4 J C^Z) + f J (V,F) + C^^) J (H,f)
H H

R
2

Substituting this form into Equation 3.22
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Z
T
+ I J (¥,Z) + f J (f ,F) + (^) J (H,V) =

H.

(3.23)

, 9
bx by

v
z
z + e [(ttt-)„ - Cr5-)JRe pH y pH x"

where

Z = Local rate of change of vorticity with time

— J (Y,Z) = Advective term
H

— J (y,F) = Planetary vorticity tendency
H

(Z+eF)
J (H,H0 = Topographic vorticity tendency

H

1 2— V Z = Frictional term
Re

bx by
T T

e [ (~rr~) - (~^~)
I

= Bottom friction
pH y pH x

This form is much more convenient for deleting, weighting or evaluating

the acting forces individually. The method for incorporating the bottom

friction will be explained in the section on the refined model and the

complete development of the bottom friction is contained in Appendix A.

3. Nondimensional Parameters

Two nondimensional parameters occur in the vorticity equation.

The first one, the Reynolds' number, is defined as

LU
CO

where L, U , and A^ have been defined previously. Physically the

Reynolds' number is a ratio of the viscous to the inertial forces.

The second parameter, e, is given by

*" U
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This can be interpreted as the reciprocal of the Rossby number which is

a measure of the effect of the Coriolis force.

The solution of the equations depends only on the values of

the parameters, not on the values of the individual terms in the param-

eters. Nevertheless, estimates must be made of the individual terms in

order to determine the range of values for the nondimensional parameter

which should be investigated. Certain terms, in particular 3 and to some

degree A^, are fairly well known. The horizontal eddy diffusivity, iL
,

7 9 2
has been found for turbulent flow to be between 10 and 10 cm /sec.

7 2
The value of 10 cm /sec will be used in this development. $ can be

developed from its definition.

2fi cos 9
o

where

fi = Angular rotation of the earth = 7.29 x 10 rad/sec

9 = Latitude = 37 (for this study)

o

r = Radius of earth = 6 . 38 x 10 cm

hence,

a - 2(7.29 x 10"5
) x .8 . p _ _ -13 -1 -1

P = ~ = 1.83 x 10 cm sec
6.38 x 10

Determining representative values for L and U which are the nondimensional
oo

length and velocity scales is not as easy. Physical measurements can be

relied upon to give an estimate for U which can be considered the free
oo

stream velocity or in other words the average velocity of the current

along the coast which is unaffected by the presence of the cavity. The

best estimate that can be made indicates that a value of approximately

one-tenth to one centimeter/second is a reasonable one. Theoretical
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considerations are relied upon to obtain a representative value for L.

The value chosen for L is the most questionable of all the character-

istic values. A value of one mile (1.61 x 10 cm) is chosen since it

represents the smallest possible size for any feature to be distinguish-

able on the grid employed. This is because one mile is the size of one

grid space on the arrays used to solve the equations numerically. Using

these values, it is found that approximate values for the nondimensional

parameters used in this study are

Re = 1.61 x 10~ 2

e = 4.74 x 10" 3

C. DEVELOPMENT OF STREAM FUNCTION EQUATION

The vorticity equation is one equation in two unknowns; the vorticity,

C, and the stream function, ty. In order to solve the vorticity equation,

another equation relating to one or both of these variables must be

found. A second equation is derived from the definitions of the

vorticity and stream function and equating the two.

1. Derivation

Respectively, the vorticity and the derivatives of the stream

function were previously defined as

C = v - u
x y

il> = vh
x

\b = -uh
y

therefore

x y
< - <-f>

+ H>
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thus ,

h\b - ib h hil; - i> h
_ xx x x

2 2
h h

finally, separating terras

C = £ V
2
^ - —

(if, h + 1(1 h ) (3.2*)
h , 2 x x y y

Equation 3.24 can be solved for the stream function if it is converted

to its numerical representation by substituting the proper relationships

for the derivatives. This process is carried out in the numerical

approach sections which occur in both the simple cavity flow problem

and the refined model.

2. Nondimensionalization

Following the same procedure as in Section III-B-3 and using the

same nondimensional terms as used for the vorticity equation, the stream

function equation can be nondimensionalized. Substituting into the

stream function equation yields

Z
(J=)

- V
2
£-> , (U.LD) |

(i) -
Jj

(ij)
[T
x(UJ»

H
x

<2) +
L n D

\ <U~D) H
y <ff>]

collecting terms

U „2 UJ
ULD . U D

2
CO V Y oo oo

Z (— ) = ^ (-=—) " ^ [? H + ? H ] (——

)

L H
L
2
D H

2 x x y y
L])

2

therefore, all characteristic values cancel giving

Z = ^ V
2
¥ - =rr (V H + Y H ) (3.25)

H
R
2 x x y y

This is the desired nondimensional stream function equation which is used

in conjunction with the vorticity equation to solve for both the stream

function and the vorticity.
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IV. SIMPLE CAVITY FLOW

A. GOVERNING EQUATIONS

The governing equations for the simple cavity flow problem derive

directly from the equations developed in Section III. Two equations

are necessary: The vorticity transport equation, Equation 3.23, and

the stream function equation, Equation 3.25.

Z
T
+ | J (¥,Z) + | J <Y,F) + IS+SEl J (H,Y) =

H

Z = 1 v
2
^ - -^ (V H + ¥ H )H

R
2 x x y y

The following assumptions are made in the simple cavity flow problem

1. Bottom friction is negligible

2. Depth is constant

3. Coriolis force is negligible

Using these assumptions, Equations 3.23 and 3.25 become

Z
T

=
Re"

V^ " J (VF
'
Z) (4,1)

Z = V
2
Y (A. 2)

where the stream function for a constant depth reduces to

V = -U
y

¥ = v
x

In developing the general equation, it is found that for convenience

of form it is better to define the vorticity as

Z = V - U
x y
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although the normal convention for the vorticity is

Z = U - V
y x

Simplifying, the equation eliminates the need for this unconventional

form; therefore, the normal convention for the vorticity is used.

Changing the convention changes the definition for the velocity in terms

of the stream function and some of the signs in the vorticity equation.

The partials are now defined as

y = U
y

f = -v
X

Using this convention and the fact that J(A,B) = -J(B,A) the vorticity

equation becomes

Z
T

=
Re"

V^ " J (ZsH,) (4,3)

The above equation for the vorticity is in suitable form for solving

by utilizing the Arakawa Jacobian, but a slightly different form is

needed to solve by upwind differencing. Applying the definition of the

Jacobian we have

J(Z,y) =Z! - Z ¥
x y y x

substituting for the partials of the stream function

J(Z.Y) - Z U + Z V
x y

this term can be expanded to

UZ + VZ = (UZ) + (VZ) - Z[U + V ]x y x y x y

but the bracketed term equals zero by the continuity equation, and it is

found that the Jacobian becomes

J(Z,Y) = (UZ) + (VZ) (A. 4)
x y
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Introducing the new term into the vorticity equation, the desired form

is obtained.

Z
T

=
Re"

y2z " [(UZ)
x
+ (VZ)

y
] (4,5)

B. NUMERICAL APPROACH

1 . Upwind Differencing for Solving the Vorticity Equation

Upwind differencing achieves static stability by differencing

in the direction of the flow. Differencing of the advective terms in

this method is always upwind of the point in question. Considering

Equation 4.5, forward time differencing can be used for the first term

and the technique for representing the Laplacian can be used for the

second. In is the advective terms in brackets which must be handled

in a special manner.

Z
n+

! - Z
n

, Z
k

.+Z
k+

| .-2Z
k

Z
k _+Zk+1 -2Z

k

(Ax) (Ay)

- [advective terms] (A. 6)

where

n is time step level

k is iteration level in space

The numerical scheme used to represent the advective terms depends upon

the direction of the flow, sign of U and V, and on whether or not the

flow reverses itself between two successive grid points. Using upwind

differencing, the direction of the flow and occurrence of flow

reversals must be checked at each grid point. One upwind differencing

scheme is as follows

:
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NO FLOW REVERSALS OCCUR

+ U

+ V

- U

- V

(uz). - (uz)
i_1

Ax"

(vz). - (vz)

Ay

(uz),
+1

- (UZ).

Ax

(uz)
j+1

- (UZ)
j

Ay

Backward differencing

Backward differencing

Forward differencing

Forward differencing

FLOW REVERSALS

There are several methods which adequately handle flow reversals

The one incorporated into this study is an averaging scheme. Consider-

ing the x-direction advective term, it is represented by

(UR
Z
R "W

Ax

where

U
R

=
U
i+ 1

+ U
l

Z = Z if U >
R i R

\ ' Z
i+1 " U

R
< °

U. + u. .

Z, - Z. 'if U >
L l-l L

ZT
= Z. if UT

<
L l L

The formula for the y-direction term is analogous to the x-direction

formula.

Interpreting the situation physically, a flow reversal appears

as an artificial source or sink depending on the sign (- to + is a

source of vorticity) . Averaging eliminates the source or sink.

2. Method for Solving Vorticity Equation Employing the
Arakawa Jacob ian

This approach to the problem is very simple. Forward time

differencing is used for local rate of change of vorticity with time,
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the representation for the Laplacian is used for the frictional term and

the representation for the Jacobian is the one developed by Arakawa.

Originally only upwind differencing was going to be used to solve the

simple cavity flow problem but when the aspect ratio was increased to

three the upwind differencing method would not converge. Utilizing

the Arakava method, solutions were obtained but at the expense of

decreased detail. The following is the numerical equation which was

derived for this procedure.

z
n+1

- z
n

At
^ = ir [

k k+1 k
Zr,, . + Z

K
, . - 2Z.

1+1
> J 1" 1

? J Lj

k+1 k
+ Z. . , - 2Z.

Re
(Ax)

1 + i,j+l i,.j-l

(Ay)
2

i*l] (4.7)

12AxAy 1+1,3 i,J-l i+l,j~l x,j+l 1+1, j+1

V. .,- (Z,,. ,+Z.,, .,,-Z. . .-Z. _ ,,_) +
i,j+l i+l,3 1+1,3+1 i-l,3 1-1,3+1

Y. . (Z. .,,+z. ..,-z, . ,-z, . , .) +
1-1,3 1,3+1 1-1,3+1 1,3-1 1-1,3-1

v. . , (z. , ,+Z. . --Z..- ,-z,.- . ) +
i,j-l i-l,3 1-1,3-1 i+l,3 1+1,3-1

Vl,j+1 (Z
i41,j-

Z
i,j+l ) +

v. , ,., (z. ..,-z, . .) +
1-1,3+1 i,j+l i-l,3

y
4 , . , (z.

1
,-z, . j +

1-1,3-1 1-1,3 1,3-1

Y
i+i,j-i

(z
i,j-r

z
i+i,j }

3. Optimum Overrelaxation to Solve Poisson's Equation for the

Stream Function

The numerical equation used to solve for the stream function is

derived in the following manner.

Z = V
2
f

Using the representation for Laplacian





n =
i+1 >J j-kii i »i + i »J+1 i >J" 1 i 'i

i,j
(Ax)

2
(Ay)

Letting B = Ax/Ay

(Ax)
2

Z
n

,
= ^

k
in ,

+ «^
+
J .

- 2T
k+

l + B
2

[Y
k

.,, +V
k+

] ,
- 24>

k+1
]

this yields

v
k+

l ~r- rf,i .+^ .+B
2

(
vF
k

. 11 +
v
f
k+1

J-(Ax)
2
z
n

.]
1,3 2(1+B )

i+1 »J 1_1 'J 1,3+1 1,3-1 1,3

This method for deriving an equation for the stream function is known

as Richardson's method. If new values are used as soon as they are

available, it becomes Leibmann's method. A further refinement is

achieved by using optimum overrelaxation. The formula for this

technique is

yk+1 = y
k

+
Ropt

[H
,k

+H
,k+1

+B
2

(lJ/
k

+4
,k+l

)
i,3 i,3

2(1+B
2

)
i+1 'J i-1'3 i,3+l i,3"l

(4.8)

(Ax)
2

Z
n

- 2(1+B
2
)y

k
.]

1,3 i,3

Ropt is the optimum overrelaxation factor which in this study has been

found to be approximately 1.72 for the best overall results. The

bracketed term is the residual and as the solution converges to the

exact solution it approaches zero.

4. Boundary Conditions

There are many solutions to any given partial differential

equation. Boundary and initial conditions must be specified in order

to determine a unique solution. Figure 4.1 identifies the boundaries

which must be specified in the simple cavity flow problem.
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1. Inflow

2. Wall

3. Wall

4. Wall

5. Lid

6. Outflow

Figure 4.1 Specifications of Boundaries

Each boundary and its associated equation are discussed separately in

the following sections,

a. Inflow

(1) Velocity Profile

To be able to specify the inflow, a velocity boundary

layer profile must be defined. Three velocity profiles are considered:

a polynomial, logarithmic, and hyperbolic tangent. It is found that

there is little difference in the results obtained by using these

different profiles. The profiles are plotted for comparison in Figure

4.2. The equations are normalized so that the values range between

and the maximum velocity, 1. Over this range the polynomial and the

logarithmic profiles agree well although the logarithmic profile does

not approach the maximum value, 1, asymptotically as desired.

The first profile considered is a polynomial derived

experimentally for small scale flow in Ref. 6. It is expressed

mathematically by the following fifth degree polynomial:

U = .000493 + 2.408031y - 2.841989y
2
+ 2.796410y

3

- 1.904102y
4
+ .533821y

5
(4.9)
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The second profile derives from Prandtl's equation

[Ref. 8]. According to Prandtl's theory it can be shown that the

turbulent shearing stress becomes

where

K = Von Karman's constant

u = average velocity

Directly from Equation 4.10

du _ K / o 1_

dy V p y

If it is assumed that the shearing stress, t , is constant and the

density, p, is constant then

K
'p

./— = constant = c.
V p 1

therefore

du _ fl
dy "

y

and

u = c. In y + c

To normalize this profile it is required that

u = at y =

u = 1 at y = 1

thus

c
2

=

Cl = 1/ln (e + 1.0)

y = ey' + 1.0

where e = 2.7182818

62





The velocity equation becomes

U =
In (e\ 1.0)

ln (£y + L - 0) (4al)

The last profile considered is the hyperbolic tangent.

This profile is considered because it is well behaved and possesses

two desirsble characteristics. First, it approaches 1 asymptotically

and secondly near the boundary it is, to a close approximation,

linear. In order to make the value of the profile vary from to 1

over the values of y = to y = 1, the argument Try must be used.

The resulting equation is

U = tan h (Try) (4.12)

(2) Stream Function Profile

The stream function profile is obtained by integrating

the velocity profile from the boundary to y. It is found that unless-

a well-smoothed stream function profile is obtained from the velocity

profile, instabilities in the vorticity equation develop. For example,

the following technique does not work well in deriving the stream

function from the velocity profile. Given

central differencing yields

i, .i+i Lozi_ u
2Ay

where in the preceding equation the subscript i = 1 denotes the first

grid column which is the inflow boundary (Figure 4.1). Thus

\ i+i
- 'i.j-1

+ 2AyU

Using this procedure, a profile like the one in Figure 4.3 is

developed.
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Stream Function

Figure 4.3 Unsuitable boundary layer profile

This profile causes the vorticity field to alternate in sign. For this

reason, all three velocity profiles examined are integrated analytically

in order to obtain the stream function profiles. The three stream

function profiles are

POLYNOMIAL

mn/cn 2.408031 2 2.841989 3
"P = . 00049 3y H

~ y - - y

2.79 6410 4 1.904102 5 .533821 6+ T y = y + 7 y

(4.13)

LOGARITHMIC

(ey + 1.0)

In (e + 1.0)
[In (ey + 1.0) - 1.0] (4.14)

HYPERBOLIC

Y = — log (cos h iry) (4.15)

The three profiles are plotted in Figure 4.4. It is apparent how

similar the three profiles are. The choice of the hyperbolic profile

for the one used in this study is based primarily on the fact that it
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possesses the two theoretically desirable properties previously

discussed.

(3) Vorticity

The development of the vorticity input equation is much

simpler than the stream function equation. Only one assumption is

necessary in this development , that is

f €> - °
3x dX i ,

this can be approximated by

_3V,
=

_3_V|

3x' . 3x' .

1,3 2,

j

Remembering the relationship between the velocity and stream function

then

3U. 3
2
f,

8y
'l,3 3y

2
i,J

3 V,

3x' .

=
2

s 2',

3 4?

„ 2
l,j 3x l,j 3x 2,j

Defining the vorticity as

3Ui _ _3Vi

substitution yields

2 2
31, 91

.

7 = +^ 3y
Z

l,j 3x
Z

2,j

Centered differencing gives

Z = ,J ,:] '-1
I

3,;1 1,:1 }1 (4.13)
1,j

(Ay)
2

(Ax)
2
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b. Walls

All of the walls can be handled in a similar manner. Two

assumptions are necessary in order to find the value of the stream

function at the walls.

First, it is assumed that the no slip condition applies at

all the walls; therefore, at the walls

U = V =

V = Y =
y x

hence, V = constant

Secondly, assuming that the arbitrary constant of integration is zero,

then for all the walls

¥ - (4.14)

The vorticity is handled in a slightly different manner.

Consider first the walls parallel to the X direction, at the wall it

is obvious that V = 0, therefore

z m ™L\ = a
2y

i

wall 3y' 1n .2' n1wall 3y wall

Expanding ¥ into a Taylor's series

°
J»° ?

Y n^i = X i i
+ "77 Ay+^r ;r (Ay)

wall+1 / wall isy 2 _ 2 . -

/ / wall 9y wall

this gives

:

Z „ -—SSim
(4.15)Wal1

(Ay)
2

U equals zero for the walls parallel to the y direction, thus

= av, _ A
wall 8X 1

... '2 1 ..
wall 3x wall

Expanding again yields:
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o

+ |?| Ax+^-^4| (Ax)
2

r-
wall+1 /wall ^x 1

n . 2 „ 2
wall 9x inwall

therefore

wall /, \2
(Ax)

c. Downstream Continuation

The stream function at the outflow is determined by a simple

extrapolation procedure. Letting IL be the outflow boundary and IL-1

and IL-2 the two preceeding grid points, then the desired relation is

given by
(J) + vj;

_
Y
IL-2 *IL

IL-1 2

thus

Y = 2^ - H* (A. ] 7)
IL IL-l,j IL-2,j

V^.J/;

The vorticity at the outflow is assumed to be transferred

out of the grid. This yields

Z
IL " Z

IL-1
<*•«>

This can be interpreted as meaning that there is no production of

vorticity between the last two grid points.

d. Lid

If the Lid is considered to be a frictionless impermeable

wall then it is implied that it is a streamline. A streamline is a line

along which ¥ is constant; since, the stream function is assigned a

value at the inflow boundary then it follows that all of the other

values along the Lid must have the same value, or

Y = T (4.19)
i,LID 1,LID v '
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Determining the vorticity at the Lid is based upon two

assumptions about the velocity at the Lid. They are

f| =0
3X

LID

_aUi =
3U.

3y LID

=
3y LID-l

from these

Z. TTT. - Z. TTn (4.20)
x,LID i,LID-l

This can be interpreted as a linear extrapolation of the U velocity

component up to the Lid.

e. Corners

It is desirable to retain the effect of sharp corners in

order to approximate reality to as closs a degree as possible. The

stream function is no problem since the value at the corner is the same

as the rest of the wall, or zero. The approach to the vorticity is a

little more complicated and it is handled by using different values for

the corner depending upon the point being evaluated. The scheme which

is used is as follows

A
2(T

i,i+ i - T
i,i

)

2
(Ay)

Z

•l.J+1

wall

• i+l,j
Ax

20' .
- v. .)

B = 1+1 >J LiJ_
2

(Ax)
Z

If the vorticity at i,j+l is being evaluated the value A is used for

Z. . when Z.,, . is being evaluated the value B is used. This scheme
i,J i+l, 3

retains the effect of sharp corners. A similar method is employed for

the other corner.
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5 . Convergence and Stability Criteria

As is discussed in Section II-D, the convergence of the vorticity

transport equation depends upon the degree of convergence of the stream

function equation and the time step taken. The maximum allowable time

step in turn depends upon the grid spacing, the maximum velocities and

the Reynolds' number. This critical time step can be determined by

employing a discrete perturbation, stability analysis [Ref. 7]. Using

this method it has been determined that the critical time step for the

upwind differencing method is given by

At
c

= 1 (4.21)
max + max 2_ , 1 1 ,

Ax Ay Re ' .2 ,. .2 J

(Ax) (Ay)

The time step taken must be smaller than this critical step if the

equations are to converge.

It is found, by making many test computer runs, that it takes

approximately 100 relaxations of the stream function in order to allow

the vorticity equation to converge to within acceptable limits. The

number of relaxations is less for the method employing the Arakawa

Jacobian than for the upwind differencing method since the former

method averages three values for the advective term, minimizing the

growth of instabilities.

The degree of convergence of the equations is not very strict

since this is a preliminary study, although it is felt that the conver-

gence obtained is great enough so that any further changes that might occur

is less than the accuracy of the plotting capabilities of the Calcomp

plotters used. In general, the equations are relaxed until the residual

is one-tenth of one percent of its original value. The original value
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is the one determined by the first guess field which is obtained by

making the entire field outside of the cavity equal to the input boundary

layer profile and all the values in the cavity equal to zero. Using

these criteria and a time step equal to eight-tenths of the critical

value, it takes between twenty and forty minutes of computer time on

the IBM 360/67 to obtain the desired results for each set of input

parameters, which are the Reynolds' number and the aspect ratio.

6 . Computational Sequence

Simply stated, the procedure used to solve the numerical

equations involves calculating the vorticity transport equation,

relaxing the stream function equation, taking a time step and calcu-

lating the new vorticity field. This procedure is repeated until the

equations are converged to within acceptable limits. A more compre-

hensive list of the steps involved in this procedure is as follows:

STEP1 - Define all constants which specify the problem and/or

minimize computational time.

STEP2 - Specify the initial stream function by either reading in an

initial guess field or extrapolating values from the inflow

boundary condition.

STEP3 - (Needed only for upwind differencing method.) Specify the

initial velocity fields utilizing the initial stream function

field.

STEP4 - Specify the initial vorticity field by either reading in an

initial guess field or determining the field by using Poisson's

equation.

STEP5 - Calculate all the boundary conditions for the vorticity.

STEP6 - (Needed only for upwind differencing method.) Calculate the

velocity fields from the stream function field.
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k+1
STEP7 - Calculate Z " using the vorticity transport equation.

STEP8 - Check the vorticity field for convergence. Exit to STEP11

if convergence criteria is met, continue if not.

STEP9 - Calculate the new *F distribution using optimum overrelaxation

holding the vorticity field constant.

STEP10 - Advance one time step and return to STEP5.

STEP11 - Plot stream function and vorticity field computed on Calcomp

plotters

.

7. Programming Optimization

One of the objects of solving the. simple cavity flow problem is

to gain experience in programming problems of this nature. An important

aspect of programming is being as efficient as possible in order to

minimize the computer time necessary to solve the problem. Two basic

principles to follow in order to do this are: minimize operations and

structure the program efficiently. Minimizing operations can be divided

into two categories. First, one can minimize computations by manipu-

lating the numerical equations until they are in the most efficient form

to be programmed. This basically breaks down to collecting like terms

and defining new constants (to be put in the initialization part of the

program) in order to eliminate unnecessary calculations. Secondly, all

unnecessary computations should be eliminated. An example will demonstrate

how this is different from the first category. The critical time step in

the simple cavity flow problem involves the maximum components of the

velocity (Equation 4.21). This requires many time consuming computations

in order to determine the maximum values on the grid. It was found that

after five time increments the maximum values of the velocity components

varied very little and, therefore, the time increment stabilized. It was
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therefore unnecessary to continue these time consuming calculations

to determine the critical time step since it remained virtually constant.

The second basic principle of structuring the program efficiently

can make a tremendous difference in the amount of computer time used. A

summary of some of the things this author has found helpful is contained

in the following list.

1. Avoid subroutines, especially in DO loops

2. Avoid function statements

3. Avoid unnecessary indexing and if an index appears more

than once in a calculation, equivalence it to a nonsubscripted variable

A. Avoid mixed modes

5. Avoid computed and assigned GO TO statements

6. Convert divisions to multiplications where possible

7. Initialize values in DATA statements

Most of the things in the list, which it is advisable to avoid, were

developed for the convenience of the programmer, but the price that is

paid for this convenience is increased computational time.

C. RESULTS

The complete results of the simple cavity flow problem, consisting of

twenty-four Calcomp plots of the vorticity and stream function, is con-

tained in Appendix B. These plots, twelve stream function and twelve

vorticity, are for Aspect Ratios of 1, 2, 3, and Reynolds' numbers of 1,

10, 100, and 1000. The plots are of only a portion of the total grid as

shown in the following diagram in which the shaded area is that area

which is plotted.

Contours are not plotted at equal intervals; therefore, the relative

magnitude of the circulation within a plot cannot be determined from the
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stream function gradients. Only the direction of the flow is indicated

by the streamlines since the velocity vectors are tangent to the stream-

lines. All plots are plotted using the same contour levels so that a

realistic comparison between plots can be made.
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The main purpose of this part of the investigation is an examination

of the different circulation patterns which might occur. With this pur-

pose in mind, four of the more interesting flow patterns are presented
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in Figure 4.6. An indication of the effect of increasing the magnitude

of the flow by increasing the Reynolds' number is shown in the top two

plots. Not only is the magnitude of the flow increased when the Reynolds'

number is increased, but the pattern becomes more circular and the

center of the gyre is positioned closer to the mouth of the cavity. The

lower diagrams represent patterns which result if the Aspect Ratio is

increased from 2 to 3. It is shown that the pattern starts to split in

the case where Re = 10 and the Aspect Ratio = 3. If the Reynolds' number

is lowered to 1, the split becomes complete. This latter case is intar-

esting because there is some evidence that this type of pattern occurs

in Monterey Bay. It had been speculated that the splitting of the cur-

rent might be caused by the presence of the submarine canyon. But as

seen later, this type of circulation only occurs for the simple cavity

flow model.

All of the vorticity plots are similar. A typical plot, for Reynolds'

number of 10 and Aspect Ratio of 2, is illustrated in Figure 4.7. It can

be seen that the walls and especially the corners have a significant effect

on the vorticity. It is doubtful that the effect of the sharp corners can

be easily extrapolated to what occurs in the real world.

Defining closed circulation as that which occurs in any area where the

streamlines form a closed curve, it is interesting to note that in all

cases closed circulation does occur. It will be seen that this differs

markedly from the results for the refined model. The closed circulation

varies from occurring in only the corners of the cavity to filling the

entire cavity. If it is assumed that this simplistic model approximates

the real world, then, important conclusions about a bay as a place within

which to deposit effluent can be deduced. These conclusions are discussed

in the following section.
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D. CONCLUSIONS

As was seen in the previous section, some form of closed circu-

lation occurs in all of the solutions of the stream function obtained.

If this is the case in reality, then, an embayment could be a poor

place within which to deposit waste. Should the effluent be deposited

within one of the gyres, diffusion and tidal currents would have to be

relied upon to disperse the pollutant. Diffusion and tidal currents

might not disperse the pollutant at a rate fast enough to keep the

pollution below a safe level.
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V. REFINED MODEL

A. GOVERNING EQUATIONS

The development of the final equations from Equations 3.23 and 3.24

lacks only the formulation for the bottom friction. The bottom friction

terms in the vorticity transport equation (3.23) are not in a form which

can be numerically solved; therefore, seme other relationship must be

found from which they can be computed. Ihe following is a reasonable

approach to the problem which yields a form for the bottom friction which

can be solved numerically.

1. Bottom Friction Equations

This development, due to its length, is derived in detail in

Appendix A. The short explanation contained here will introduce the

method used to obtain a relationship for the bottom friction. Consider-

ing Ekman's solution for slope currents, it can be shown that

2
d w _ ifw g_ cU^

,2 A A 9ndz v v

where the complex velocity field is given by

w = u + iv

The solution to this equation is

ig /£Osh_a£ - > d^
f cosh ah 8n

where

a- (r)

V

Now, the bottom stress equals
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b A .

T _ _V QW I

ph " h 3z'
z = -h.

therefore

£ =^ (f«)
tanh ah .£ (5.1)

By integrating the velocity over depth it follows that the transport,

Tr, equals

Tr = (|£) (|^) - (tanh ah - ah) (5.2)
i dr\ a

then equating 5.1 and 5.2

:L_ (11) Tr r
tanh ah

i

ph h tanh ah - ah

Reducing this equation to its x,y components and nondimensionalizing

yields

I— = Y [- — V + — V ] (5.3)
pH l H x H y

J K J

x
by

R? R1I— zzFr-^li}/ .illy]
( 5# 4)

pH l H x H y
J v J

where Rl and R2 are coefficients which are functions of ax which in

turn is equal to

?
1/2

/2 ,fh\ax = ^ (—

)

v

Assuming that the depth at a given point, once specified, remains con-

stant and f and A are constant, then Rl/H and R2/H need only be computed

once at each grid point in the beginning of the numerical program and

stored for future use in each iteration of the vorticity equation. A

closer look at the equations shows that the bottom friction is represented
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by depth-dependent coefficients multiplied by the components of the

velocity. This follows directly from the fact that

F [- Rl r^ + R2 t^-] = - F [Rl-V + R2'U]
n H

The other bottom stress component takes a similar form.

Table II contains values for Rl and R2 which are computed from

the full equations. The frictional coefficients and approximations

used to calculate them for large ax are plotted in Figure 5.1 and Figure

5.2. The approximations are given in Appendix A. It can be seen from

the plots that the approximations are excellent as long as ax is greater

than 2.0. Below this value, the full equations must be used. Relating

this to the depth, it is found that the approximations are good until

h < 3/A (meters)

At very small values for the argument ax, which is dealing with depths

on the order of centimeters, the solution oscillates about zero and

the validity of the solution is questionable. This is not investigated,

because at depths shallower than five meters the surf zone is encountered

and this regime is controlled by a different set of processes.

2. Final Form for the Vorticity and Stream Function

Equations for the vorticity and stream function of the refined

model were derived in Section III. These equations with slight modifi-

cations, depending upon which forces are being neglected, are used in

this section. Substituting for the bottom friction, the equations

arrived at in Section III-l, Equations 3.23 and 3.24 become

V Re"
V^ " H

J(H/
'
Z) " H

J(VF
'
F) "

(Z+

2

F)
J(HjVF)

H (5.5)

U H x H V H x H V3
y x
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TABLE II

Frictional Coefficients

ax Rl R2

.5 -0.19995 6.00305
1.0 -0.19899 1.51133
1.5 -0.19509 0.69132
2.0 -0.18587 0.41530
2.5 -0.17090 0.29412
3.0 -0.15284 0.22951
3.5 . -0.13526 0.18872
4.0 -0.12014 0.15995
4.5 -0.10773 0.13849
5.0 -0.09756 0.12197
6.0 -0.0819 7 0.09836
7.0 -0.07059 0.08235
8.0 -0.06195 0.07080
9.0 -0.05517 0.06207
10.0 -0.04972 0.05525
15.0 -0.03325 0.03563
20.0 -0.02497 0.02628
25.0 -0.01998 0.02082
30.0 -0.01666 0.01723
35.0 -0.01428 0.01470
40.0 -0.01250 0.01282
45.0 -0.01111 0.01136
50.0 -0.01000 0.01020

100.0 -0.00500 0.00505
200.0 -0.00250 0.00251
300.0 -0.00167 0.00167
400.0 -0.00125 0.00125
500.0 -0.00100 0.00100

1000.0 -0.00050 0.00050
2000.0 -0.00025 0.00025
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and

Z = fj V
2
Z " ^r (Y H HH) (5.6)

H
R
2 x x y y

Taking the indicated partials in the bottom friction term gives

Z
T

=
Re ^ " H

J°' ,Z) ~ H
J(4,>F) " ^f^ J(H^)

H
(5.7)

+ eF [|^ V
2
^ + J(§^,¥) +

(I

2
-) » +

(f

2
-) f

x ]

y x

Tha equations for the refined model contain the volume transport

stream function rather than the velocity stream function which is con-

sidered in the simple cavity flow problem. This study is interested

only in the direction of the flow and net the volume transported. The

velocity stream function has the property that the direction of the flow

is at all points tangent to the streamlines. Here, it will be proven

that the volume transport stream function has the same property.

Considering

v-w = u|^+ v I-
dx oy

therefore

V-VY = U (+ UH) + V(-UH)

thus

v-vy E o

This means that the velocity is perpendicular to the gradient of the

volume transport stream function which in turn means the velocity is

everywhere tangent to the streamlines.

3. Convergence and Stability

The rate of convergence for the refined model, as expected, is

much slower than for the simple cavity flow problem. To obtain
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convergence to within one percent of the original residual, it takes

between two and three hours of computer time. On the average, the

equations are converged until the residual is one-half of one percent

of the original value. The proper time step is determined experimentally

and is found to be about one-fiftieth of the time step used in the

simple cavity flow section. Convergence to within one percent of the

original residual required approximately 600 time steps.

Although the Arakawa Jacobian is a stable representation, it is

found that the bottom topography introduced must be smoothed, eliminating

some detail, in order to obtain the desired degree of convergence.

B. INVESTIGATION OF THE RELATIVE IMPORTANCE OF THE CORIOLIS FORCE AND
BOTTOM FRICTION

One question which occurred during the development of this study was:

how important are the Coriolis force and the bottom friction? To inves-

tigate this question the nondimensional parameter, e, and the non-

dimensional. Coriolis force, F, is examined since both forces contain

these terms.

1. Coriolis Force

The magnitude of the Coriolis force and, to a degree, the bottom

friction depend upon the magnitude of the nondimensional parameter, e.

Recalling that

e=f^ (5.8)

where

and

2ft cos

3= °-

F = F + Y
o
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where

Y - Direction of true north

F - t tan 9
o L o

ft ~ (7.29x10 rad/sec) angular rotation of earth

o

r - (6.38x10 cm) radius of earth

L - (1.609x10 cm) characteristic length = one mesh length
in x direction

= (37°) latitude for this study
o

Carrying out the indicated arithmetic operations yields

-13 -] -1
$ = 1.8 x 10 cm sec

and

_ 6.38 x 10
8

. ,_o _
F = c tan 37 + Y

1.61 x 10

which reduces to

F = 3 x 10
3
+ Y

It can be seen from 5.8 that once the characteristic length is deter-

mined, then E depends only upon the characteristic velocity, U . Fron

the definition for the Reynolds' number, a relationship for U can be

determined.
ReA

u =T-E

Substituting into 5.8 gives

SL
3

e =
R6A

H

Assuming a value of 10 for A^ and substituting the values obtained for

3 and L, then e becomes

7.64 x 10~5
e = -

Re
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This is a convenient relationship because solutions for various

Reynolds' numbers are desired; therefore, once the Reynolds' number

is specified, the value for e is determined.

Assuming, at first, that the Coriolis force is constant, the

term appealing as a coefficient in front of both the bottom friction

and topographic tendency terms is

eF = eF
o

Direct substitution yields

.23
eF = -

—

Re

The inclusion in the model of the constant term, eF, is necessary and

presents no problems. Now, the effect of the inclusion of the variation

of the Coriolis term with Latitude is examined. The term being examined

is given by

| J(Y,F) = | [V F -fF]
H H x y y x

It has been determined that

eF = 3 x 10
3
e + Ye

Thus, if it is assumed that the grid is aligned such that Y is in the

direction of True North, then

(eF ) = 7.64 xlO"5

but

therefore

y Re

(eF) = eF
y y

§ [T F _ ^y ] = 7 - 64 x 10
~5 v

*
H L

x y jf x Re H
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This terra is at least several orders of magnitude less than the other

terras in the equation and is, therefore, negligible. Thus, although

the variation of the Coriolis force is negligible due to the scale used

in this study, the presence of a constanc Coriolis force will be shown

to have an effect upon the solutions which are obtained.

2. Bottom Friction

Ex£mining the bottom friction terms in Equation 5.7 it can be

seen that the frictional coefficients, Rl and R2 , appear in all of the

expressions. Looking at Table II it is seen that the frictional coeffi-

cients rapidly become small and the change of the coefficients in the

horizontal direction, due to the change in the bottom topography, becomes

negligible. Considering eF, with Reynolds' numbers greater than one,

this factor which is multiplied into the frictional term is less than

.2. Thus at Reynolds' numbers greater than one or at depths greater

than thirty meters the bottom friction becomes negligible. Since this

model uses a grid spacing of 0.5 miles in the Y direction and 1.0 miles

in the X direction, the area covered and the topographic changes are

large. The only place where the bottom friction would have any signifi-

cance is at the few grid points immediately surrounding the boundaries

where conditions are only approximated. At very shallow depths, less

than five meters , the equations no longer represent the current regime

because the surf zone is encountered. Also, considering that the

velocity profile, irrespective of bottom friction, is generally a maximum

at the surface and decreases with depth, the effect of bottom friction

is minimized in this situation compared to the situation where the

velocity is constant with depth. For these reasons, it is concluded

that it is unrealistic to assume that the inclusion of the bottom

friction would increase the accuracy of this model.
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C. NUMERICAL APPROACH

1. Method for Solving the Vorticity Equation

The full vorticity equation, Equation 5.7, neglecting the

variation of the Coriolis force with Latitude and the bottom friction.

reduces to

Z
T

- |^ V
2
Z - | J(Y,Z) -

(Z~^F) J(H,¥) (5.9)
H

in finite difference form this becomes

_n+l _n . Z
k

.+Z
k+

| .-2Z
k

. Z
k

.^+Zk+1 -2Z
k

.

Z =Z__ = 1_
r

i+l,j i-l
, j i^ 1,3+1 1,3-1 i,-|

(Ax) (Ay)

(5.10)

1
(Z

i i

+ eF)

i,j H
2

.

i,J

where the Jacobians in the above equation are solved by Arak^wa's

technique which is outlined in Section II-B-3. For programming purposes,

the above equation is manipulated to yield a similar equation which mini-

mizes number of computations needed to obtain a solution.

2. Optimum Overrelaxation for Solving the Stream Function Equation

Substituting the appropriate finite difference forms into

Equation 5.6 yields

z = -1
t

1+1 >J i-i».i LJ + 1 »-i +1 i».i-i x »-i

]H
i,j (Ax)

2
(Ay)

2

_ _i r 1+1,3 1-1 ».1 1+1, .1
1-1,

.1 . 1,J+1 1,1-1 1,3+1 1,1-1 ,

2 L 2 2
HT . 4 (Ax) 4 (Ay)
i

> J

2
An expression for ¥ . .is desired; therefore, first multiply by (Ax)

i »

J

and then collect terms obtaining:
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2 2
Av k+1 Ay

2 [1 + (t
21

) ] V. . = (T» , + ¥, . .) + (7^) (V. ... + T, . .)
Ay i,j l+l, J 1-1,3 Ay 1,3+1 i,j-l

- (Ax) H Z
n

-
(Ax)

[

1+1 'J 1 "1 >-1 1+1 »J 1" 1 »J

i,i i,j H. . / /. \2
1,3 4 (Ax)

+
i»3+l 1,3-1 i>3+l 1,3-1

j

4 (Ay)
2

AX
Letting B = — and employing Optimum Overrelaxation

k+1 , . k RoDt k k+1 ? k k+1
rv. - (1.0 - Ropt) v. . +

opu
[H* ..+¥. . . + B

Z
C1\ ,._ + Y. .)

i»3 i,3
2(1+B ) ^

J ,J 1,J 3-»J
_1

/ t k+l
X ,

- (Ax)
2

H. .Z
n

.
- i+l,3 i-l,

J
i+l,

J 1-1,3
i,3 i,3 4H

-1- , J

E k k+1
- 75 (*. ..1 ~ *.

, -,) (H. ,,, - H.
. )]4H . i,3+l 1,3-1 i,3+l i,3-l

J-
, J

Defining the constants and reorganizing :'.n order to minimize computations,

this equation is used to calculate the stream function.

3. Boundary Conditions

a. Inflow

In this model the stream function is not related to the

velocity, U, as in the simple cavity flow but to the volume transport,

UH; therefore, the stream function is a function of both the depth and

the velocity. It is assumed that the inflow boundary layer is completely

dominated by the bottom profile with frictional effects being negligible.

This being the case, the input velocity is assumed constant and the stream

function boundary layer is determined directly from the bottom topography.

Knowing that

Y = -UH
y
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then one procedure for determining the input boundary layer is

2Ay l,j

and

v
i • ,1 = ^i •

t
- 2Ay UH

1
.

This procedure for determining the input boundary layer is found to be

unsatisfactory as it is in the case of the simple cavity flow. To

solve the problem of specifying the inflow stream function boundary

layer, the grid is extended five grid spaces upstream and four spaces

downstream as transitional regions. The bottom is specified as linear

at the artificial inflow boundary gradually changing into the "true"

bottom profile. When this is done, a well behaved input profile can be

determined by

thus

«F = -UH
y

y
i

Y - - I UH dy

y

but U is constant and H = CY, therefore

finally

yl

Y = -UC
J

Y dy

yo

2

y
i

«P = -ucf-

yo

where C is the slope of the artificial inflow bottom

H - R\

C = Y-Y
1
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It follows directly from Equation 3.11 that the vorticity

is zero at the inflow since the V component of the velocity is zero and

the U component is constant.

b. Lateral Boundaries

The rectangular shape of the cavity is retained in the

refined model. It is assumed that the effect of the bottom topography

will simulate the effect of realistic boundaries. This is achieved by

using the actual coded bottom but specifying a minimum depth to be used

whenever the depth becomes too shallow or the boundary goes overland.

This minimum depth is used until the wall is reached. Diagramatically

,

this is illustrated in Figure 5.3. Using this method, the problems of

programming variable boundaries and its associated large increase in

computer time is bypassed. In doing this the boundary condition at the

wall still must be specified.

The stream function at the walls is still equal to zero since

no slip conditions are applied which implies that the velocity at the

walls is zero. The vorticity can be determined in the following manner.

First, consider walls alligned in the X direction. At the wall, V =

and

wal1 * wall ^<all

thus o

wall ^h
;

u 2
y H

and

Z
11

= h *
wall H yy

Considering Taylor's expansion:
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wall+1 yKall y^\ in 2 yy , / y;
^ -^ 'wall 'wall

therefore

f
_ wall+1

yy (Ay)
2

Substitution yields
2T

_ 1_ wall+1
wall

""

H. .

"

.
N 2

i,J (Ay)

Vertical walls are handled in a similar manner yielding

2V
1 wall+1

wall H. . ,. N 2i,j (Ax)

Sharp corners are handled in the same way they are handled

in the simple cavity flow problem. It is expected that the effects of

the boundaries on the solution will be diminished due to the effect of

the bottom topography.

c. Downstream Continuation

The same method as the one employed for the simple cavity

flow problem is used. This method gives

w = y = 2^ - ¥
outflow IL,J IL-1,J IL-2,J

and

outflow IL,J IL-1,J

d. "Lid"

It is assumed that the "Lid" is far enough from the cavity

so that the assumption that there is no volume transport across this

imaginary boundary will not seriously affect the flow patterns created.

It is assumed that the current at the "Lid" is constant and parallel to the

"Lid". This makes the "Lid" a stream line and as in the simple cavity flow

problem:
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Z
i,LID " Z

i,LID-l

e. Bottom Topography

Two basic bottom topographies are used in this study. The

first bottom topography (Figure 5.4) used is a hypothetical one which

is very simple in order to minimize any instability it might generate.

This bottom is obtained by making the depth at the "Lid" a constant 1600

meters and assuming a linear decrease of depth along the inflow boundary

to zero at the first grid after the wall. This makes the value at the

wall the minimum non-zero depth. All of the other columns exterior to

the cavity are equivalenced to the inflow column. The entire grid is

then relaxed, holding the boundaries constant until a steady state is

reached. The presence of the cavity craated the bottom topography in

Figure 5. 4.

To obtain a bottom topography which simulates that of

Monterey Bay, a bathymetric chart of the bay is overlain by a 50 x 80

grid and the depths are coded at each grid intersection and then placed

on computer cards. The field is then read into the computer and stored

for use in the program as needed. The maximum depth of 1600 meters is

chosen because it is approximately the maximum level of no motion used

in geostrophic current calculations. The field is smoothed by averaging

the surrounding four grid points in order to obtain the central grid

value , i.e.:

H...
,
+ H. - . + H. . + H.

H = i+l >.1 r-1,
.1 i,.i+l 1..1-1

It is necessary to smooth the field in order to eliminate inconsistencies

in the bottom topography. In order to retain the effect of the canyon,

the boundaries of the 1600 meter contour are preserved. This boundary
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is marked by the dark line in Figure 5.5. Figures 5.6—5.9 show a

progression from the original field to one smoothed five times. It

can be seen that after only five smoothing passes only the general

outline of the canyon is still preserved.

4 . Computational Sequence

The computational sequence for this portion of the study is very

similar to the one used in the simple cavity flow section with a few

additions. The first difference is that the bottom topography must

either be generated within the program or must be read into the program

from some external source: tape, disc, cards, etc. The other main

difference is that the vorticity transport equation is much more complex

and some of the dimensioned variables occur more than once in the

equation. In order to minimize computer time, at each time step, the.se

multiple-subscripted variables are equivalenced to non-subscripted

variables before the vorticity transport equation is solved.

D. RESULTS

The vorticity equation used for the refined model is given by

Z
T

= ^ V
2
Z -

I J(^Z) -
(Z+e

2

Y)
J(H,Y) (5.11)

H

In the above equation the stream function is the volume transport stream

function. There are two cases which develop naturally from this equation,

Case I occurs when eF equals zero. Physically, this is the situation

that arises when the Coriolis force is neglected. When eF is assumed to

be a constant other than zero, then only the change of the Coriolis force

with latitude is being neglected. This is case II. Solutions for both

cases are obtained and discussed in the next two sections. A measure of
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the importance of the various terms in Ecuation 5.11 can be obtained by

varying the Reynolds' number and eF.

1. Neglecting the Coriolis Force

For this case, results are obtained for both bottom topographies

discussed in Section V-3—e. In the solutions obtained here the flow is

from the left to the right representing flow from the South to the North.

For the hypothetical bottom topography illustrated in Figure 5.3, due to

its symmetry, the solutions are the same for flow in either direction.

This is true only because the input velocity is assumed constant and

therefore the input vorticity is zero, "his is tested in several computer

runs by reversing the position of the inflow and outflow and differencing

in the opposite direction. No differences in the solutions develop from

reversing the direction of the flow, but it is expected that if gyres

occur which are not in the center of the cavity then the two solutions

would have the gyre positioned on opposite sides of the cavity. If there

is an input velocity boundary layer, different solutions would be obtained

for flows in opposite directions because of the change in the sign of the

input vorticity.

Using the hypothetical bottom topography illustrated in Figure

5.3, the volume transport stream function plot in Figure 5.10 is the

result obtained. Computer runs for Reynolds' numbers of .01, .1, 1, 10,

100 are made and all of the results are qualitatively identical to this

plot. The plot of the volume transport stream function obtained when

the bottom topography simulating Monterey Bay is used is contained in

Figure 5.11. The results for this bottom topography are also identical

over the range of Reynolds' numbers from .01 to 100.

It can be seen from the results for the hypothetical bottom

topography that within the bay, the streamlines follow the bottom contours.
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This means that the direction of the flow within the bay is generally

along the bottom contours; but at the larger depths encountered outside

of the bay, the direction of the flow does not follow the contours. The

fact that trie flow does not follow the contours outside of the bay while

it does inside the bay is undoubtedly, not only, the result of shallower

depths within the bay, but also, due to the fact that the volume trans-

port in the bay is much slower than outside of the bay. For the bottom

topography simulating Monterey Bay the entire cavity is filled with a

gyre. Again, no significant difference is discerned between the solutions

obtained over the range of values investigated. It is also noticed that

the cavity seems to cause a disturbance downstream from the cavity.

Although the field downstream is not long enough to be absolutely certain,

it is reasonable to assume that this is a wave induced into the

flow by the bottom topography. For comparison purposes, the simple

cavity flow problem is solved for the case of Reynolds' number equal to

.01 and Aspect Ratio of 2. The result is contained in Figure 5.12. It

is evident what a significant difference the inclusion of the bottom

topography has upon the resultant solution.

2. Assuming a Constant Coriolis Force

After examining the case where the Coriolis force is neglected,

the effect of including a constant Coriolis force is investigated. A

range of values of the Reynolds' number and Coriolis force must be

investigated because these parameters depend upon the characteristic

scales used. Since some of the scales, such as the length scale, cannot

be determined exactly, solutions must be obtained for a range of values

of the nondimensional parameters. It is then assumed that the solution,

which models the true circulation the best , falls within this range of

values.
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Using the hypothetical bottom topography shown in Figure 5.3,

solutions are obtained for eF equal to .23 and 23. These are contained

in Figures 5.13 and 5.14, respectively. Each figure represents solutions

for Reynolds' numbers of .01 and 1 since the solutions do not differ over

this range of values. As can be seen a change of two orders of magnitude

of eF has some effect on the flow pattern generated; whereas, a change

of two orders of magnitude of the Reynolds' number has a negligible

effect upon the solution. This means that over this range of values the

effect of the Coriolis force interacting with the bottom topography,

^ j(h,<o
H

has a larger effect upon the solution than the frictional term,

F"2z
Re

Still, no closed circulation occurs in any of the solutions obtained for

the hypothetical bottom topography.

The next step is to obtain solutions for various values of the

Reynolds' number and the Coriolis force for the bottom topography simu-

lating Monterey Bay, Figure 5.4. Solutions are obtained for the follow-

ing values of the parameters

:

eF Re Figure

.23 x 10"2 .01, 1 5.15

.23 x 10
2

.01, 1 5.16

1.00 x 10
3

.01, 1 5.17

It is immediately obvious, that with the Monterey Bay bottom topography,

closed circulation occurs for all of the solutions obtained. Also, the

solution for the hypothetical bottom fails to yield closed circulation

over the same range of values for the two nondimensional parameters, Re
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and eF. It can be concluded, then, that the closed circulation is the

result of the presence of the Monterey Submarine Canyon and that the

bottom topography has the most significant effect upon the circulaticn

pattern generated.

E. CONCLUSIONS

The foundation for the development of a good model for investigating

the current-driven circulation in an embayment has been established.

Included in this model are the effects of advection, planetary vorticity

tendency, topographic vorticity tendency and lateral shear stress. The

relative order of magnitude of the bottom friction and the change of

Coriolis force with latitude is investigated and determined to be

negligible: compared to the other acting forces and assumptions that are

made in the development of this first stage of the model.

There are two areas in particular where the model could be improved.

First, effects of the inclusion of the bottom friction should be investi-

gated further. Effects of the bottom friction diminishes rapidly with

increasing depth, but in shallow areas around the boundaries and within

the bay, the bottom friction might have a significant influence upon the

circulation patterns. Second, some of the boundary conditions should be

refined. The walls representing the coastline might be represented in

a more realistic manner. This would go hand in hand with the inclusion

of the bottom friction. Also, the inflow and outflow should be represented

by less restrictive equations.

The representation for the bottom friction is an approach suggested by

Dr. Jerry Gait and developed in this thesis by the author. It is believed

to be a new approach and one worth investigating further. This approach
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is of special interest because the bottom friction is a linear function of

the velocity making it amenable to analytic solutions.

It is assumed in this model that the input vorticity is zero; because

of this, the solution does not depend upon the sign of the vorticity gen-

erated at the boundary which is a function of the direction of the flow.

If a velocity boundary layer exists, as many studies propose, then the

vorticity will not be zero at the inflow and the solution will, in addition

to the other variables, become a function of the direction of the flow.

This is a case which should be investigated not only to find out the effect

of a boundary layer upon the solution but to determine the effect on the

solution of changing the direction of the flow.

Results of this study indicate that the occurrence of closed circu-

lation in Monterey Bay is a distinct possibility. This investigation

indicates that the presence of the submarine canyon seems to increase the

possibility of the occurrence of closed circulation.

In conclusion, it can be stated that this study indicates that the

bottom topography is the controlling factor in determining what type of

circulation pattern is to be expected in a given bay. Over the ranges of

values examined for Re and cF, the change of the vorticity from one case

to the next had little effect upon the solution of the stream function.

This is because in deeper water the volume transport becomes much larger

than the vorticity and, therefore, the stream function equation becomes

I V
2
Y _ I_^ (H/ H + y H ) = o

H
R
2 x x y y

which is, for all practical purposes, independent of the vorticity., This

puts additional constraints upon the types of flow patterns which may occur,
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APPENDIX A

DEVELOPMENT OF BOTTOM FRICTION

Assuming that the coefficient of vertical eddy diffusivity, A , is

constant, the bottom stress is proportional to the change of the mean

velocity gradient with depth. Using Ekman's solution for slope currents

an expression for the velocity as a function of depth can be obtained, but

in this relationship the velocity is also a function of the slope of the

sea surface. In order to eliminate the sea surface slope, which is not

easily obtainable, the velocity can be integrated over depth to give an

expression for the volume transport. Equating these two relationships

an expression for the bottom stress which does not depend upon the slope

of the sea surface can be obtained. The first step in this development

is to obtain the analytic solution for the velocity from the following

three equations

2

fv + A 1-a . - 1 1£ (A-!)
V

3 Z
2 p dx

2

-fu + A ^--if (A-2)
v

8z
2 p 9y

P = -pgh (hydrostatic pressure) (A-3)

These equations can be derived from equations II-l and II-2 with the

addition of the following assumptions

1. Steady state conditions prevail

2. Non-linear terms are negligible

3. Lateral turbulent stress is negligible

Ekman solved these equations analytically in the following manner:
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and

3P 3h

"3x~

= "Pg al

3P ah

a?
= ~pg ^

Substitution yields

2
8 u _ Jfv £_ _3h

- 2 A A 8x
3Z V V

2
9 v _ j[u j*_ ah

thus

defining

it follows

. .2 A A ay
3z v v J

—2 (u+xv) = - (u+iv) + — (— + i —

)

3z v v y

w = u + iv

3ri 3x 3y

A_w = ±
fir + i_l£ (A_4),2 X
A A 3n

kA q;

dz v v

Ekman found that the solution to this equation is

w i£ cos£_az _ |c
f cosh ah 3n

where

a= (r)

V

Substituting A-5 into equation A-A readily shows that it is a solution.

Given an expression for the velocity, expressions for the bottom

stress and the transport can now be found. The bottom stress is given by
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since

b A -
T _V 3w I

ph
=
h 3z '

z=-h

3w 3?
|5 = a (-ifi) tanh ah

,

3 z f 3n

therefore

b A a .— = -t— (rf) tanh ah —

-

ph h f 3n
(A-6)

Determining the transport is as easy as the determination of the bottom

friction. Knowing that

o

then

thus

T =
J

wdz

-h

•T - f (i&)
(f)

(£2^i - 1) dZ
r J f 3n cosh ah

T - (^) (|5") [ ^—r -
1
- sinh az

r f 3n cosh ah a
- Z

-h -h

finally

T = (§*) (|£) (-) (tanh ah - ah)
r r dri a

Equating A-6 and A- 7 gives

— a T = 7— a (rf
2
-) (—) tanh ah [1 - -—-—

-

h r h f 3n tanh ah

(A-7)

from this the desired expression for the bottom friction is obtained

b A nT v 2 _ , tanh ah
]

(A-8)

This form is not convenient for programming. Transforming equation A-8

into a more convenient form involves separating it into its x,y components
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This is accomplished in the following manner: first, the transport is

defined in terms of the stream function

but

T = T + i T
r x y

T = UH = -Y
x y

T = VH = ¥
y x

thus

T = -¥ + i ¥
r y x

secondly, the hyperbolic terms must be separated into its components.

Defining

9
1/2

, .1/2 ,fhA .1/2
ah = i (——) =i x

v

therefore

1/2
T .. if „ r TANK i ' x

where

ph ' h
T
r *„ .1/2 .1/2

] (A 9)
M TANH l x - x x

.1/2 ._o . . ,_o ft . . Jl
l = cos 45+i sin 45 = —r- + i —r = a+ia

Substituting for the arguments of the hyperbolic terms yields

1/2
TANH i ' x TANH (ax+iax)

_ AMU .1/2 .1/2 TANH (ax+iax) - (ax+iax)
TANH l x - l x

through fundamental hyperbolic trigonometric identities and some simple

complex variable manipulations the following relationship can be arrived

at

TANH (ax+iax) = Rl + i R2

TANH (ax +iax) - (ax+iax)

in which

:
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R1
G-C

G + 2 [A-C]

R2 = 3Z
G + 2 [A-C]

and

A = ax [COSH 2ax + COS 2ax]

C = SINH 2ax + SIN 2ax

D = SINH 2ax - SIN 2ax

_ (COSH 2ax - COS 2ax)
G —

(A-10)

ax

substituting into equation A-9 gives

b

V = 7T- (-V +iY ) (Rl + i R2)
ph h y x

expanding terms yields

bx by
f

V- + i "tt- = r [-R1Y + R2^ + i (-R2Y - R1Y ) ]
ph ph h x y x y

equating real and imaginary terms leads to the desired bottom friction

components, i.e.:

bx
^7— = - (-R1Y + R2^F )
ph h x y

and

T^ f
-^r— = - (-R2T - RTF )
ph h x y

Approximations for the frictional coefficients, Rl and R2, can be derived

when 2ax is greater than 4 by eliminating negligible terms in the

equations A-10. The approximations can be shown to be

1 - ax
Rl =

2
2 (ax) - 2ax + 1
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R2 = f
2 (ax) - 2ctx + 1

After these equations were developed it was determined from the

relative order of magnitude of the terms involved that the bottom

friction is negligible; therefore, this representation was not tested.

Plots of the frictional coefficients and tables of it's values are

contained in Section V. By way of comparison, though, it can be shown

that the results from this method can be interpreted to agree with the values

for the bottom friction used by Hansen who represented the bottom friction

by

b
t I

2
a. 2 /TT^t = (ru vu +v , rv vu +v )

where

r = 3 x 10~ 3

This representation is the same as

b ,„-3 .,2
t = 3 x 10 x V

where V is the velocity vector. The method described in this thesis gives

approximately the same value for "r" over the depth range of 2000 - 3000

meters if it is assumed that A = 100. A big difference is that the
v

2
coefficient in this study is multiplied by V instead of V , but if it is

assumed that the mean currents over depth investigated are of the order of

magnitude of 1 cm/sec then the results from both methods are similar. It

is impossible to compare the two exactly because the methods for computing

the bottom friction are dissimilar. This method does allow the bottom

friction to be represented in a rational manner and has the added

attraction of being linear in velocity making it amenable to inclusion

in analytical solutions.

Walter Hansen, Hydrodynamical Methods Applied to Oceanographic Problems ,

Proceedings of the Symposium on Mathematical-Hydrodynamical Methods of

Physical Oceanography, p. 25-34. Institut fur Meereskunde der Universitat

Hamburg (1962)

.
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APPENDIX B

SOLUTIONS FOR THE SIMPLE CAVITY FLOW PROBLEM

This appendix contains Calcomp plots of solutions to the simple cavity

flow problem. There are twenty-four plots, twelve of the stream function

and twelve of the vorticity. Two different techniques are used to obtain

these solutions. Upwind differencing is used to obtain as many solutions

as possible but when this technique failed to converge the second method,

employing the Arakawa Jacobian for solving the advective terms, is used.

The following is a breakdown of the technique used to obtain each

solution.

Reynolds ' Numbe r

1,10,100,1000

1,10,100

1000

1,10,100,1000

Aspect Ratio

1

2

2

3

Technique

Upwind differencing

Upwind differencing

Arakawa

Arakawa
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